Regularized Newton Methods for Convex Minimization Problems with Singular Solutions

نویسندگان

  • Dong-Hui Li
  • Masao Fukushima
  • Liqun Qi
  • Nobuo Yamashita
چکیده

This paper studies convergence properties of regularized Newton methods for minimizing a convex function whose Hessian matrix may be singular everywhere. We show that if the objective function is LC2, then the methods possess local quadratic convergence under a local error bound condition without the requirement of isolated nonsingular solutions. By using a backtracking line search, we globalize an inexact regularized Newton method. We show that the unit stepsize is accepted eventually. Limited numerical experiments are presented, which show the practical advantage of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Truncated regularized Newton method for convex minimizations

Recently, Li et al. (Comput. Optim. Appl. 26:131–147, 2004) proposed a regularized Newton method for convex minimization problems. The method retains local quadratic convergence property without requirement of the singularity of the Hessian. In this paper, we develop a truncated regularized Newton method and show its global convergence. We also establish a local quadratic convergence theorem fo...

متن کامل

A Family of SQA Methods for Non-Smooth Non-Strongly Convex Minimization with Provable Convergence Guarantees

We propose a family of sequential quadratic approximation (SQA) methods, the inexact regularized proximal Newton (IRPN) method, to minimize a sum of smooth and non-smooth convex functions. Our proposed algorithm features its strong convergence guarantees even when applied to problems with degenerate solutions, while allowing the inner minimization to be solved inexactly. We prove that IRPN conv...

متن کامل

New Quasi-Newton Optimization Methods for Machine Learning

This thesis develops new quasi-Newton optimization methods that exploit the wellstructured functional form of objective functions often encountered in machine learning, while still maintaining the solid foundation of the standard BFGS quasi-Newton method. In particular, our algorithms are tailored for two categories of machine learning problems: (1) regularized risk minimization problems with c...

متن کامل

Stochastic dual averaging methods using variance reduction techniques for regularized empirical risk minimization problems

We consider a composite convex minimization problem associated with regularized empirical risk minimization, which often arises in machine learning. We propose two new stochastic gradient methods that are based on stochastic dual averaging method with variance reduction. Our methods generate a sparser solution than the existing methods because we do not need to take the average of the history o...

متن کامل

Iterative Reweighted Singular Value Minimization

In this paper we study general lp regularized unconstrained matrix minimization problems. In particular, we first introduce a class of first-order stationary points for them. And we show that the first-order stationary points introduced in [11] for an lp regularized vector minimization problem are equivalent to those of an lp regularized matrix minimization reformulation. We also establish that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Comp. Opt. and Appl.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2004